Product and Quotient Rules

The Product Rule

The derivative of f(x) times g(x)....

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

This can be applied to more than two functions.

$$\frac{d}{dx}[f(x)g(x)h(x)] = \frac{f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)}{f'(x)g'(x)h(x) + f(x)g'(x)h(x)}$$

Find the derivative of f(x)g(x)

$$f(x) = 3x - 2x^{2}$$

$$g(x) = 5 + 4x$$

$$f(x)g(x) = (3x - 2x^{2})(5 + 4x)$$

$$f(x) = g'(x)$$

$$(3x - 2x^{2})(4) + (3 - 4x)(5 + 4x)$$

$$12x - 8x^{2} + (15 - 8x - 16x^{2})$$

$$12x - 8x^{2} + 15 - 8x - 16x^{2}$$

$$-24x^{2} + 4x + 15 = \frac{d}{dx}(f(x)g(x))$$

Find the derivative of:

$$y = 3x^{2} \sin x$$

$$(3x^{2})(\cos x) + (6x)(\sin x)$$

$$y' = 3x^{2} \cos x + 6x \sin x$$

$$y = \frac{2x \cos x}{2 \cos x} - \frac{2\sin x}{y' = (2x)(-\sin x) + (2)(\cos x)} - \frac{2\cos x}{-2x \sin x} + \frac{2\cos x}{-2x \sin x}$$

 $y' = 2x \sin x \cos x + x^2 \cos x \cos x + x^2 \sin x (-\sin x)$ $y' = 2x \sin x \cos x + x^2 \cos^2 x - x^2 \sin^2 x$

$$\frac{\chi^2(\sin^2\chi + \cos^2\chi)}{\chi^2(\sin^2\chi + \cos^2\chi)}$$

The Quotient Rule

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \qquad g(x) \neq 0$$

$$y = \frac{5x - 2}{x^{2} + 1}$$

$$f'(x) = 5$$

$$g'(x) - 2x$$

$$5x + 5 - 10x^{2} + 1x$$

$$x'' + 2x^{2} + 1$$

$$-5x^{2} + 4x + 5$$

$$x'' + 2x^{2} + 1$$

Find the equation of a tangent line to the graph of:

$$y = \frac{3 - \frac{1}{x}}{x + 5} at (-1,1)$$

$$y = \frac{3 - \frac{1}{x}}{x + 5} \frac{x}{x} = \frac{3x - 1}{x^2 + 5x}$$

$$y' = \frac{-3x^2 + 2x + 5}{(x^2 + 5x)^2}$$
Slope
$$y'(-1) = \frac{-3(-1)^2 + 2(-1) + 5}{((-1)^2 + 5(-1))^2}$$

$$y = 0$$

$$y = \frac{-3(3x - 2x^{2})}{7x}$$

$$y = \frac{-3(3x - 2x^{2})}{7x}$$

$$y = \frac{-3}{7} \cdot \frac{(3x - 2x^{2})}{x}$$

We know...

$$\frac{d}{dx}\left[\sin x\right] = \cos x \qquad \qquad \frac{d}{dx}\left[\cos x\right] = -\sin x$$

From this, we can use the quotient rule to differentiate other trig functions.

$$\frac{d}{dx} \left[\tan x \right] = \frac{d}{dx} \left(\frac{\sin x}{\cos x} \right)$$

$$= \frac{\cos x \cos x - \sin x (-\sin x)}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} - \frac{1}{\cos^2 x} = \frac{\sec^2 x}{\cos^2 x}$$

$$\frac{d}{dx} \left[\tan x \right] = \sec^2 x \qquad \frac{d}{dx} \left[\cot x \right] = -\csc^2 x$$

$$\frac{d}{dx} \left[\sec x \right] = \sec x \tan x \qquad \frac{d}{dx} \left[\csc x \right] = -\csc x \cot x$$

$$y=x-tan(x)$$

 $y'=1-Sec^2x$

$$y = \frac{1 - \cos x}{\sin x}$$